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Abstract
In this paper, we study the �th partial-wave scattering for particles subjected
to a non-local rank-two separable potential. Analytic expressions for the
scattering amplitude, bound and resonance states, phase shifts and time delays
are obtained and numerical illustrations are provided.

PACS numbers: 03.65.Nk, 03.65.Fd, 03.65.Db, 03.65.Ge

1. Introduction

Nonlocal two-body separable interactions have often been used in many-body problems
because of the fact that the two-body Lippmann–Schwinger equation is exactly solvable
[1–5], and leads to closed expressions for a large class of such interactions. These potentials
have also been used with Faddeev equations for the three-body problem [6–8].

The theory of separable potentials was first proposed for the 3S1 nucleon–nucleon
interaction by Yamaguchi [9, 10]. The behavior of a certain kind of nonlocal potential has been
studied by Mitra et al [11–13] in the complex angular momentum plane. Tabakin [14, 15]
used a set of separable potentials with small off-energy-shell T-matrix elements, matching
the s, p and d-wave nucleon–nucleon phase parameters without generating the usual strong
short-range correlations. Mongan [16, 17] also used a set of rank-two separable potential of
the same general form as Tabakin’s, which fit the Arndt–MacGregor nucleon–nucleon phase
parameters [18] for partial waves through � = 4. Ghirardi and Rimini [19] have examined
general properties of separable potentials. Moreover, such potentials have been studied as
models for a variety of physical problems [20–30].

In a recent work, the s-wave scattering properties of a system with zero angular momentum
(s-wave) via a rank-two separable potential were calculated [31] and used for obtaining the
quantum statistical mechanical properties of fluids [32]. In this paper, we have been motivated
to extend our previous work for a system with arbitrary angular momentum via a rank-two
separable potential. In the present work, the formalism is generalized to obtain the explicit
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analytical results for the �th partial-wave scattering wavefunction and its properties. It should
be mentioned that most contributions appearing in the literature are concerned with the s-wave
case.

2. Separable potential

A separable potential model can generally be written as

V̂ =
n∑

i=1

∑
�

(2� + 1)vi |χi; �〉〈�;χi | (2.1)

where n is the rank of the potential operator V̂ , vi is the attractive (or repulsive) coupling
strength and |χi; �〉 is the state of the system with angular momentum quantum number �,
which is a real number in the unitary case. The momentum representation of such a potential
is

V̂ (p,p′) = 〈p|V̂ |p′〉 =
n∑

i=1

∑
�

(2� + 1)viχ
(�)∗
i (p′)χ(�)

i (p) (2.2)

where χ
(�)
i (p) ≡ 〈p|χi; �〉. A possible generalized separable potential for the �th partial wave

can be written as a Yamaguchi type

χ
(�)
i (p) = 1

π3/4

[
22��!(2� + 1)a2�+1

i

�(� + 1/2)

]1/2
p�(

a2
i + p2

)�+1 P�(cos θp) (2.3)

where P�(cos θp) is the Legendre function in which θp is the polar angle of vector p, �(n) is
the Gamma function and ai represents the inverse range of the potential.

The state-dependent form factor of our separable potential model χ(�)
i (r) can be calculated

from the Fourier transform of equation (2.3) as

χ
(�)
i (r) ≡ 〈

r|χ(�)
i

〉 = 2π1/4

h3/2

[
22��!(2� + 1)a2�+1

i

�(� + 1/2)

]1/2 ∫
C

dp
p�+2(

a2
i + p2

)�+1 dp

×
∫ 1

−1
d(cos θp) P�(cos θp) eipr cos θpr /h̄ (2.4)

where C is a contour in the complex p-plane which goes from −∞ to ∞ passing above the
poles and θpr is the angle between p and r. Using the Jacobi–Anger expansion [33]

eipr cos θ/h̄ =
∞∑

n=−∞
inJn(pr/h̄) einθ = J0(pr/h̄) + 2

∞∑
n=1

inJn(pr/h̄) cos(nθ) (2.5)

the form factor χ
(�)
i (r) can then be written as

χ
(�)
i (r) = 4π1/4

h3/2

[
22��!(2� + 1)a2�+1

i

�(� + 1/2)

]1/2

P�(cos θr)
∑
n=0

ing(�)(n)

∫
C

dp
p�+2(

a2
i + p2

)�+1 Jn(pr/h̄)

(2.6)

where Jn(x) is a Bessel function of the first kind of integral order n and g(�)(n) is a function
of n, which can be expressed as:

g(�)(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(�−2)/2∏
k=0

�/2∏
k′=0

[n2 − (2k)2]

[n2 − (2k′ + 1)2]
(−cos nπ − 1) � = even

(�−3)/2∏
k=0

(�+1)/2∏
k′=0

[n2 − (2k + 1)2]

[n2 − (2k′)2]
(−cos nπ − 1) � = odd

(2.7)
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for n �= 0 and g(�)(n) = δ0�/2 for n = 0, where δij is Kronecker delta. From the numerical
evaluation of equation (2.7), it can be shown that a rapid absolute convergence of alternating
series, appearing in equation (2.6), occurs. Moreover, it is convenient to introduce an integral
form of the Bessel function

Jn(x) = 1

2π i

(
x

2

)n ∫
t−n−1 e(t−x2/4t) dt. (2.8)

The advantage in using the Jacobi–Anger expansion (equation (2.5)) in terms of the Bessel
function Jn(x), rather than spherical Bessel function is that the integral in equation (2.6)
may be solved analytically by substituting the integral form of Jn(x) (equation (2.8)) into
equation (2.6). Therefore, the form factor leads to

χ
(�)
i (r) = 2π−3/4

h3/2

[
22��!(2� + 1)a2�+1

i

�(� + 1/2)

]1/2

P�(cos θr)

×
∑
n=0

in−1g(�)(n)

(
r

2h̄

)n ∫
et dt

tn+1

∫
C

dp

[
p

a2
i + p2

]�+1

pn+1 exp

(−r2p2

4h̄2t

)

(2.9)

The expression of χ
(�)
i (r) can be obtained using the contour integration by closing in the upper

half of the complex plane. It can be shown that∫
C

dp

[
p

a2
i + p2

]�+1

pn+1 exp

(−r2p2

4h̄2t

)
= π i

⎡
⎣exp

(−r2a2
i

4h̄2t

) �∑
j=0

ξ
(�,n)
j G�−j (r, t)

⎤
⎦ (2.10)

where

ξ
(�,n)
j = (� + 1)(� + 2)

2

(−1)j (iai)
n+�+2−j

(2iai)�+1+j

(
n + � + 2

j

)
(2.11)

G�−j (r, t) =
�−j∑
k=0

(−1)k

k!

(2iai)
�−j−2k

(� − j − 2k)!

(
r2

4h̄2t

)�−j−k

(2.12)

in which
(
k
j

)
is the binomial coefficient. Substituting equations (2.10)–(2.12) into (2.9), the

form factor χ
(�)
i (r) can then be obtained from the following analytical expression:

χ
(�)
i (r) = (ai/h̄)3/2(� + 1)(� + 2)

[
22�+3�!(2� + 1)√

π�(� + 1/2)

]1/2

P�(cos θr)

×
∑
n=0

�l∑
j=0

�−j∑
k=0

(−1)ni�l+j

2k+j

1

k!

1

(λ − k)!

(
n + � + 2

j

)
g(�)(n)

(
rai

h̄

)λ

Jλ(rai/h̄)

(2.13)

where λ ≡ � − j − k.

3. The scattering states

The Lippmann–Schwinger equation for the partial-wave scattering state associated with the
incident plane wave |ϕ〉 is as follows [34]:∣∣ψ(�)

z

〉 = |ϕ〉 +
1

z − Ĥ 0
V̂ (�)

∣∣ψ(�)
z

〉
(3.1)

3
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where Ĥ 0 = p̂2/2m is free motion Hamiltonian and z ≡ E + iε is the complex-energy
parameter.

The exact solution of the Lippmann–Schwinger equation (equation (3.1)) via the separable
potential plays an important role in quantum scattering theory, since it contains the information
for studying the many-body systems. In this work, the partial-wave scattering properties of a
system have been calculated from the analytical solution of the Lippmann–Schwinger equation
via a nonlocal rank-two separable potential. By using equation (3.1), the components of the
scattering wavefunction in the χ

(�)
1 and χ

(�)
2 channels can be obtained from the following

system of equations:{(
v1Q

(�)
11 − 1

)
B

(�)
1 + v2Q

(�)
12 B

(l)
2 + C

(�)
1 = 0

v1Q
(�)
21 B

(�)
1 +

(
v2Q

(�)
22 − 1

)
B

(�)
2 + C

(�)
2 = 0

(3.2)

where C
(�)
i (i = 1, 2) is the inner product 〈χi; �|ϕ〉 and the matrix elements of the free motion

resolvent Q
(�)
ij are defined for any complex z as follows:

Q
(�)
ij (z) ≡ 〈χi; �| 1

z − Ĥ 0
|χj ; �′〉δ��′ (i, j = 1, 2). (3.3)

The solution of equation (3.2) leads to(
B

(�)
1

B
(�)
2

)
= 1

D

(
1 − v2Q

(�)
22 v2Q

(�)
12

v1Q
(�)
21 1 − v1Q

(�)
11

)(
C

(�)
1

C
(�)
2

)
(3.4)

where the determinant D is defined as

D = (
1 − v1Q

(�)
11

)(
1 − v2Q

(�)
22

) − v1v2Q
(�)2

12 . (3.5)

The matrix elements Q
(�)
ij (z) can be obtained in the upper half q-plane as

Q
(�)
ij (q) = 2m

∫
C

χ
(�)∗
i (p)χ

(�)
j (p)

(q2 − p2)
dp

= 4mπ−1/2(aiaj )
(2�+1)/2

[
22��!

�(� + 1/2)

] ∫
C

[
p2(

a2
i + p2

)(
a2

j + p2
)
]�+1

dp

(q2 − p2)

(3.6)

where q ≡ √
2mz. The expression of Q

(�)
ij (z) can be evaluated using the contour integration

by closing in the upper half of the complex plane. The result is

Q̃
(�)
ij (q̃) = 2�+2�!π1/2

�(� + 1/2)

(ãi ãj )
2�+3

2

(ãi + ãj )2�+1

�(�)(ãi , ãj , q̃)

(q̃ + iãi)�+1(q̃ + iãj )�+1
(3.7)

where Q̃
(�)
ij (q̃) = (aiaj /m)Q

(�)
ij (q̃) are the reduced matrix elements of Q

(�)
ij (q̃), in which

q̃ ≡ q/aav is a dimensionless momentum variable and ãi(j) ≡ ai(j)/aav is a dimensionless
inverse range parameter, in which aav ≡ a1+a2

2 . Equation (3.7) is the key result that allows a
complete analytical solution of the model potential. In appendix A, the analytic expressions
of �(�)(ãi , ãj , q̃) are given.

The momentum representation of the partial-wave scattering wavefunction ψ(�)
z (p̃) ≡〈

p̃
∣∣ψ(�)

z

〉
can be evaluated from the model potential (2.2) and equation (3.1) as

ψ(�)
z (p̃) = ϕ(p̃) +

1

D

2�+1

π3/4

[
�!(2� + 1)

�(� + 1/2)

]1/2
p̃�

q̃2 − p̃2
P�(cos θp)

×
2∑

i=1(j �=i)

ṽi ã
(2�+5)/2
i

(p̃2 + ã2
i )

�+1

[(
1 − ṽj Q̃

(�)
ij

)
C̃

(�)
i + (ãj /ãi)ṽj Q̃

(�)
ij C̃

(�)
j

]
(3.8)

4
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where ṽi ≡ mvi

/
a2

i is the dimensionless potential strength parameter and ϕ(p̃) is the
incoming wavefunction, which is usually the plane wave. Clearly, for � = 0 (s-wave),
the scattering wavefunction ψ(0)

z (p) is independent of any direction of incident beam [31].
The corresponding coordinate representation of the partial-wave scattering wavefunction
ψ(�)

z (r̃) ≡ 〈
r̃

∣∣ ψ(�)
z

〉
can be obtained by a Fourier transformation

ψ(�)
z (r) = 1

(2πh̄)3/2

∫
ψ(�)

z (p) eip·r/h̄ dp. (3.9)

Inserting equation (3.8) into equation (3.9), after performing integration over momentum
analytically, the scattering wavefunction in coordinate representation becomes

ψ(�)
z (r̃) = ψ0(r̃) +

2
√

2

π1/4

1

D

[
�!(2� + 1)

�(� + 1/2)

]1/2 2∑
i=1
(i �=j)

�∑
k=0

[(�−k)/2]∑
n=0

2�−n (−1)n

n!

i�−k−2n

(� − k − 2n)!

× ξ
(�+1)
k

ã
�−k−1/2
i

[(
1 − ṽj Q̃

(�)
ij

)
C̃

(�)
i + (ãj /ãi)ṽj Q̃

(�)
ij C̃

(�)
j

]
× (r̃ ãi )

�−k−nJ2�−k−n(r̃ãi )P�(cos θ) (3.10)

where C̃
(�)
i ≡ a

−3/2
av χ

(�)
i (r) is the reduced partial-wave form factor and r̃ ≡ ā

h̄
r is the reduced

coordinate.

4. Transition matrix

We now turn to investigate the analytical properties of the transition matrix in the complex
q-plane. The transition matrix explicitly shows the contributions from the bound states,
resonances and distant singularities in the complex-energy plane. The �th partial-wave off-
shell transition matrix elements in the momentum representation may be written as

〈p|T̂ (�)(z)|p′〉 = 〈p|V̂ (�)[1̂ + (1̂ − Q̂(�)V̂ (�))−1Q̂(�)V̂ (�)]|p′〉
= 〈p|V̂ (�)(1̂ − Q̂(�)V̂ (�))−1|p′〉. (4.1)

It is useful to introduce an arbitrary operator K̂ and its reciprocal K̂−1 as

K̂ =
2∑

i=1

αi |χi; �〉〈�;χi | (4.2)

K̂−1 =
2∑

i=1

βi |χi; �〉〈�;χi | (4.3)

where αi and βi are parameters that must be satisfied by the following relations,
2∑

i=1

2∑
j=1

γij

[
ãi ãj

(ãi + ãj )(ãi + ãm)(ãj + ãn)

]2�+1

= − π

24�(�!)2

1

(ãm + ãn)2�+1
(4.4)

where γij ≡ αiβj . Inserting K̂K̂−1 = 1̂ into equation (4.1) and using equations (4.2) and
(4.3), the �th partial-wave off-shell transition matrix elements can be obtained as

〈p̃|T̂ (�)(z)|p̃′〉 = T
(�)
pp′ (z) = 〈p̃|V̂ (�)(1̂ − Q̂(�)V̂ (�))−1K̂K̂−1|p̃′〉

=
2∑

i=1

2∑
j=1

2∑
k=1

γij ã
2
k ṽkχ

(�)
k (p̃)χ

(�)∗
j (p̃′)

〈
χ

(�)
i

∣∣χ(�)
j

〉
(1̂ − ˆ̃Q(�) ˆ̃V (�))−1

ki (4.5)

5
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where

〈
χ

(�)
i

∣∣ χ(�)
j

〉 = 22��!

iπ1/2

( √
ãi ãj

ãi + ãj

)2�+1

(4.6)

and the matrix elements (1̂ − Q̂(�)V̂ (�))−1
ij = 〈

χ
(�)
i

∣∣(1̂ − Q̂(�)V̂ (�))−1
∣∣χ(�)

j

〉
can be obtained as

(1̂ − ˆ̃Q(�) ˆ̃V (�))−1
ki = 1

D(�)

2∑
m=1

〈
χ(�)

m

∣∣χ(�)
i

〉 ( ṽmãm

ãk

Q̃
(�)
km − δkm

)
k �= i (4.7a)

(1̂ − ˆ̃Q(�) ˆ̃V (�))−1
11 = 1

D(�l)

2∑
m=1

〈
χ(�)

m

∣∣χ(�)
2

〉 (
δm2 − ṽmãm

ã2
Q̃

(�)
2m

)
(4.7b)

(1̂ − ˆ̃Q(�) ˆ̃V (�))−1
22 = 1

D(�)

2∑
m=1

〈
χ(�)

m

∣∣χ(�)
1

〉 (
δm1 − ṽmãm

ã1
Q̃

(�)
1m

)
(4.7c)

where Q̃
(�)
ij are the reduced matrix elements of the free motion resolvent given in equation (3.7)

and D(�) ≡ det[1 − ˆ̃Q(�) ˆ̃V (�)] is the Fredholm determinant. The above analysis makes clear
that the present method for dealing with scattering via the rank-two separable potentials allows
an insight into the influence of various parts of the potential on the transition matrix.

5. Results and discussion

The method proposed in this paper applies to arbitrary angular momentum and rank-two
separable potential. We shall illustrate the results of the preceding section for some arbitrary
values of angular momentum via the rank-two separable potential, which is a combination of
attractive and repulsive interactions with some values of inverse range parameter and coupling
strength. In the present study, the values of the parameters for our potential model have
been chosen for two cases: (i) ṽ1 = 10, ṽ2 = −10, ã1 = 0.75 and ã2 = 1.25 with similar
repulsive and attractive strength parameters but different inverse range parameters; (ii) ṽ1 = 1,
ṽ2 = −50, ã1 = 1.75 and ã2 = 0.25 with a large negative value of attractive strength parameter
and a small value for its corresponding inverse range parameter.

5.1. Bound states and resonances

The singularities of the transition matrix located on the imaginary axis in the upper half-plane
of the complex q-plane are considered the ‘bound states’, while the poles on the negative
imaginary q-axis correspond to the ‘virtual states’. In the lower half q-plane the poles with
opposite real parts are symmetrically arranged about the imaginary axis, called the ‘resonance’
and ‘antiresonance’ poles of T (�), in the fourth and third quadrants, respectively. For each
angular momentum quantum number �, the qualitative features of these singularities depend
on the values of three parameters ṽ1, ṽ2 and ã1 (or ã2 = 2 − ã1).

The T-matrix constructed in equation (4.5) explicitly shows the contributions from the
bound states and resonances in the complex-energy (or momentum) plane. Figure 1 shows
the distribution of poles of the partial-wave transition matrix in the complex q̃-plane for
p-wave (� = 1), d-wave (� = 2), f-wave (� = 3) and g-wave (� = 4) scattering. The
multiplicity of the zero of Fredholm determinant D(�) located on the imaginary axis in the
upper half-plane of the complex q-plane is equal to the degeneracy of the bound states. It may
therefore be simply said that the number of zeros of D(�) in the upper half of the q-plane equals

6
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Figure 1. Poles of T-matrix for (a) � = 1, (b) � = 2, (c) � = 3 and (d) � = 4. The selected
values for the potential parameters are: ( ) ã1 = 0.75, ṽ1 = 10, ṽ2 = −10; (	) ã1 = 1.75, ṽ1 = 1,

ṽ2 = −50.

the number of bound states, counting each zero as many times as its multiplicity and each
bound state as many times as its degeneracy. For this potential model, it can be seen that there
are 2(� + 1) degenerate bound states at both points q̃k = iã1 and q̃k = iã2 with the energies
EB,i = − h̄2

2m

(
ã2

i

/
a2

av

)
and in some cases there is only one non-degenerate bound state.

Moreover, there exist several poles of T-matrix in the fourth quadrant located at
q̃k = q̃r − iq̃i (q̃r , q̃i > 0) with q̃i sufficiently small, called resonances, with the energy
ER and the corresponding width �R as

ER = h̄2

2ma2
av

(
q̃2

r − q̃2
i

)
(5.1)

�R = 2h̄2

mā2
q̃r q̃i (5.2)

7
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where q̃r and q̃i are the real and imaginary parts of q̃, respectively. Even further, each pole q̃k

in the fourth quadrant (resonance pole) goes with a twin pole q̃∗
k in the third quadrant, called

antiresonance pole.

5.2. Scattering amplitude, phase shift and time delay

The on-energy-shell partial-wave scattering amplitude f�(p̃) is given by:

f�(p̃) = −(2π)2 lim
ε→0+

〈p̃|T (�)(E + iε)|p̃〉 (5.3)

where limε→0+ means that ε is positive and goes to zero. The total scattering amplitude, which
contains all the scattering information then becomes

f (p̃) =
∑

�

(2� + 1)f�(p̃)P�(cos θ). (5.4)

As a result, by inserting equation (4.5) into equations (5.3) and (5.4) the scattering amplitude
and its partial-wave will be obtained.

The partial-wave phase shift δ� can be expressed in terms of the partial-wave scattering
amplitude as

f�(p̃) = 2i eiδ� sin δ� (5.5)

or alternatively

δ� = arctan

[−Ref�(p̃)

Imf�(p̃)

]
(5.6)

where f�(p̃) is given in equation (5.3). Therefore, the partial-wave scattering phase shift
associated with our potential model can be obtained analytically. Clearly, since the arctangent
is a multivalued function, it is necessary to choose a particular branch which makes δ

continuous. Figure 2 represents the partial-wave phase shifts as a function of reduced energy
defined as Ẽ ≡ m

/
a2

av for p- and d-waves.
Another interesting quantity to characterize quantum scattering processes is the time

delay. The formation of a resonance, which occurs as an unstable intermediate state in
scattering processes, introduces a time delay between the arrival of the incident wave and its
departure from the collision region. This property has been examined in many works [13, 22].
The partial-wave time delay τ� ≡ 2

q

dδ�l

dq
can be used to estimate the resonance energy, since τ�

should rapidly rise as a function of momentum (or energy) and reach its peak near a resonance
indicating its location. Figure 3 represents the reduced partial-wave time delay τ̃� for some
selected cases, where τ̃� = a2

avτ� = 2dδ�/dẼ. Obviously, any significant change in phase
shift, as a function of energy, will be seen clearly in the time delay plots. It should be noted
that a decrease in the phase shift, with respect to energy, would give rise to a negative time
delay. According to the Wigner theorem [35], the increase and decrease in the phase shift
should balance each other. In fact, according to Levinson’s theorem, a sudden jump in the
phase has been compensated by a strong negative slope. Wigner found that the negative
partial-wave time delays are restricted by ‘causality condition’ [36]. A detailed interpretation
and discussion of the circumstances giving rise to such an observation can be found in [37].
We have seen in figure 3 that in the energy region close to the resonances, the time delay is
large. We found that the negative time delay occurs at higher values of attractive contribution
to the inverse range parameter (ã2).
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6. Conclusions

It is observed that equation (3.10) is an explicit coordinate representation of the �th partial-wave
scattering wavefunction via the nonlocal rank-two separable potential. The analytic expression
of the �th partial-wave off-shell transition matrix, equation (4.5), and the explicit expressions
for a number of �th partial-wave scattering properties, such as scattering amplitude, bound
and resonance states, phase shifts and time delays are obtained. The bound and resonance
poles, scattering phase shift and time delay for some selected values of angular momentum
and inverse range and coupling strength potential parameters are described.
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Appendix A

The expressions of �(�)(ãi , ãj , q̃) appearing in equation (3.7) are as follows:

�(0) = 1/2 (A.1)

�(1) = (q̃2 − ãi ãj ) + 2i(ãi + ãj )q̃ (A.2)

�(2) = 3q̃4 + 9i(ãi + ãj )q̃
3 − 2

(
4ã2

i + 11ãi ãj + 4ã2
j

)
q̃2 − 9i(ãi + ãj )ãi ãj q̃ + 3ã2

i ã
2
j (A.3)

�(3) = 10q̃6 + 40i(ãi + ãj )q̃
5 − 2

(
29ã2

i + 73ãi ãj + 29ã2
j

)
q̃4 − 16i(ãi + ãj )

× (
2ã2

i + 9ãi ãj + 2ã2
j

)
q̃3 + 2

(
29ã2

i + 73ãi ãj + 29ã2
j

)
ãi ãj q̃

2

+ 40iã2
i ã

2
j (ãi + ãj )q̃ − 10ã3

i ã
3
j (A.4)

�(4) = 35q̃8 + 175i(ãi + ãj )q̃
7 − 5

(
69ã2

i + 166ãi ãj + 69ã2
j

)
q̃6 − 25i(ãi + ãj )

× (
13ã2

i + 47ãi ãj + 13ã2
j

)
q̃5 + 2

(
64ã4

i + 601ã3
i ãj + 1179ã2

i ã
2
j

+ 601ãi ã
3
j + 64ã4

j

)
q̃4 + 25iãi ãj (ãi + ãj )

(
13ã2

i + 47ãi ãj + 13ã2
j

)
q̃3

− 5ã2
i ã

2
j

(
69ã2

i + 166ãi ãj + 69ã2
j

)
q̃2 − 175iã3

i ã
3
j (ãi + ãj )q̃ + 35ã4

i ã
4
j (A.5)

�(5) = 126q̃10 + 756i(ãi + ãj )q̃
9 − 14

(
134ã2

i + 313ãi ãj + 134ã2
j

)
q̃8 − 84i(ãi + ãj )

× (
29ã2

i + 94ãi ãj + 29ã2
j

)
q̃7 + 6

(
281ã4

i + 2062ã3
i ãj + 3772ã2

i ã
2
j + 2062ãi ã

3
j

+ 281ã4
j

)
q̃6 + 8i(ãi + ãj )

(
64ã4

i + 865ã3
i ãj + 2169ã2

i ã
2
j + 865ãi ã

3
j + 64ã4

j

)
q̃5

− 6ãi ãj

(
281ã4

i + 2062ã3
i ãj + 3772ã2

i ã
2
j + 2062ãi ã

3
j + 281ã4

j

)
q̃4

− 84iã2
i ã

2
j (ãi + ãj )

(
29ã2

i + 94ãi ãj + 29ã2
j

)
q̃3 + 14iã3

i ã
3
j

(
134ã2

i + 313ãi ãj

+ 134ã2
j

)
q̃2 + 756iã4

i ã
4
j (ãi + ãj )q̃ − 126ã5

i ã
5
j (A.6)
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